Lezione 15/3/24

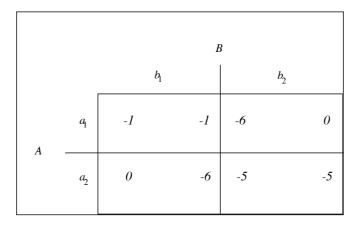
- Concorrenza imperfetta e concorrenza monopolistica (Cabral, Capitolo 4; sezione 3: pp. 107-110).
- Il modello varietà-prezzo: assunzioni, il gioco, l'equilibrio (Salvadori-D'Alessandro-Fanelli, Capitolo 5; sezione 5.1).

1

Paradosso di Bertrand

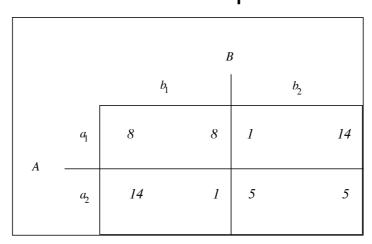
- Le imprese non sono in grado di coprire i costi fissi.
- Alternativa 1: Vincoli di capacità (modello di Edgeworth; gioco capacità-prezzo).
- Alternativa 2: Differenziazione del prodotto (modello di Hotelling).
- Alternativa 3: Collusione tra imprese.

Il dilemma del prigioniero

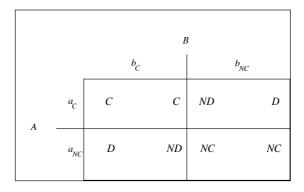


3

Il dilemma del prigioniero: altro esempio



Il dilemma del prigioniero: struttura



5

I giochi ripetuti

- Supergioco
- Gioco costituente
- Regole del gioco costituente e regole del supergioco

_

Regole

- · Numero dei giocatori;
- Strategie a disposizione di ciascun giocatore (un piano di azioni o mosse che ciascun giocatore può compiere in risposta a quelle degli altri giocatori);
- Esiti (payoff) associati a ogni combinazione di strategie giocabili.

7

Strategie (caso di due giocatori)

- Siano A e B gli insiemi di strategie a disposizione dei due giocatori nel gioco costituente.
- Le stategie del supergioco sono così definite:

$$a \in A, b \in B, E = A \times B, E^{t} = E^{t-1} \times E$$

$$A_{1} : E \to A, A_{2} : E^{2} \to A, \dots, A_{t} : E^{t} \to A$$

$$\Sigma_{A} = A \times A_{1} \times A_{2} \times \dots \times A_{t} \times \dots$$

$$B_{1} : E \to B, B_{2} : E^{2} \to B, \dots, B_{t} : E^{t} \to B$$

$$\Sigma_{B} = B \times B_{1} \times B_{2} \times \dots \times B_{t} \times \dots$$

Esiti (caso di due giocatori)

• Siano date le strategie dei giocatori

$$\begin{aligned} &h_A \in \Sigma_A = A \times \mathsf{A}_1 \times \mathsf{A}_2 \times \ldots \times \mathsf{A}_t \times \ldots \times \mathsf{A}_T \\ &h_B \in \Sigma_B = B \times \mathsf{B}_1 \times \mathsf{B}_2 \times \ldots \times \mathsf{B}_t \times \ldots \times \mathsf{B}_T \\ &\text{cui sono associati gli esiti dei singoli stadi} \\ &(g_{1h_A}, g_{1h_B}), (g_{2h_A}, g_{2h_B}), \ldots, (g_{th_A}, g_{th_B}), \ldots, (g_{Th_A}, g_{Th_B}) \end{aligned}$$

Gli esiti del supergioco associati a questa coppia di strategie sono:

$$\left(\sum_{t=1}^{T} (1+r)^{-t} g_{th_A}, \sum_{t=1}^{T} (1+r)^{-t} g_{th_B}\right)$$

9

Il dilemma del prigioniero ripetuto un numero finito di volte

 Può essere interpretato come un gioco sequenziale ed analizzato in termini di perfezione dei sottogiochi.

Il dilemma del prigioniero ripetuto un numero infinito di volte

- Non siamo in grado di individuare tutti gli equilibri di Nash.
- Esistenza di strategie che giocate in modo credibile da un giocatore inducono l'altro giocatore a cooperare ad ogni stadio del gioco.

11

Strategie che inducono l'altro giocatore a cooperare

- Trigger strategy
- Tit for tat strategy

Trigger strategy: definizione

- Sia a_t la strategia del giocatore A giocata o da giocare al tempo t.
- Sia b_t la strategia del giocatore B giocata al tempo t.
- La Trigger strategy per il giocatore
 A consiste in

```
\begin{cases} a_t = a_C & \text{se } t = 1 \text{ o } t > 1 \text{ e } a_s = a_c \text{ e } b_s = b_c \ \forall s < t \\ a_t = a_{NC} & \text{in tutti gli altri casi} \end{cases}
```

13

Trigger strategy: equilibrio di Nash

- Se entrambi i giocatori adottano la Trigger strategy, allora entrambi collaborano sempre.
- Domanda: è un equilibrio di Nash?
- Supponiamo che A l'adotti e che B adotti una qualsiasi strategia y.

Per stabilire sotto quali condizioni la trigger strategy è un equilibrio di Nash, assumiamo che il giocatore 1 adotti questa strategia e il giocatore 2 valuti cosa fare, seguendo una qualsiasi strategia y.

Gli esiti ottenuti dal giocatore 2 sono rappresentati dalla successione $Y_0, Y_1, \ldots, Y_t, \ldots$

Il valore della strategia y è dato dal valore attuale degli esiti $V(y) = \sum_{t=0}^{\infty} d^t Yt$ dove 0 < d < 1 è il fattore di sconto.

15

Trigger strategy: equilibrio di Nash

Poiché il giocatore 1 gioca la *trigger strategy*, se $Y_{t'} = C$, allora $Y_t = C$ per ogni t < t'; inoltre non possono esistere t' e t'', $t'' \ne t'$, tali che $Y_{t'} = Y_{t'} = D$. Abbiamo due casi possibili:

- (i) Esiste $\tau \in \mathbb{N}_0$ tale che $Y_{\tau} = D$ e, se $\tau > 0$, $Y_t = C$ per ogni $0 \le t < \tau$;
- (ii) $Y_t = C$ per ogni t.

$$\begin{split} Y_t &= C \Rightarrow Y_{t-1} = C, \ Y_{t+1} = C \text{ o } D \\ Y_t &= NC \Rightarrow Y_{t-1} = NC \text{ o } D, \ Y_{t+1} = NC \text{ o } ND \\ Y_t &= D \Rightarrow Y_{t-1} = C, \ Y_{t+1} = NC \text{ o } ND \\ Y_t &= ND \Rightarrow Y_{t-1} = NC \text{ o } D, \ Y_{t+1} = NC \text{ o } ND \end{split}$$

Una strategia non coincide con la successione degli esiti in quanto strategie diverse possono dare luogo alla stessa successione. Se il valore attuale degli esiti della strategia y è maggiore del valore attuale degli esiti della strategia y' (nell'ipotesi che l'altro giocatore giochi la $trigger\ strategy$) diciamo che la strategia y domina la strategia y'. Diciamo ugualmente che la strategia y domina la strategia y' quando il valore atteso degli esiti della strategia y è uguale al valore atteso della strategia y', ma la strategia y conduce ad una maggiore collusione della strategia y'.

$$Y_{t} = C \Rightarrow Y_{t-1} = C, Y_{t+1} = C \circ D$$

$$Y_{t} = NC \Rightarrow Y_{t-1} = NC \circ D, Y_{t+1} = NC \circ ND$$

$$Y_{t} = D \Rightarrow Y_{t-1} = C, Y_{t+1} = NC \circ ND$$

$$Y_{t} = ND \Rightarrow Y_{t-1} = NC \circ D, Y_{t+1} = NC \circ ND$$

17

Trigger strategy: equilibrio di Nash

Nel caso (i) la strategia y è certamente dominata da altre strategie se $Y_t = ND$ per qualche $t > \tau$, per cui possiamo certamente supporre che $Y_t = NC$ per ogni $t > \tau$. Analizziamo questo caso. Consideriamo due strategie, y e y', tali che $Y_t = Y_t'$ per ogni t tranne che in ω e $\omega + 1$ in cui $Y_\omega = C$, $Y_{\omega+1} = D$, $Y_\omega' = D$, $Y_{\omega+1}' = NC$ (ovviamente $Y_t = Y_t' = C$ se $0 \le t < \omega$ e $Y_t = Y_t' = NC$ se $t \ge \omega + 2$). La differenza tra i valori attuali degli esiti delle due strategie sono:

$$V(y) - V(y') = Cd^{\omega} + Dd^{\omega+1} - Dd^{\omega} - NCd^{\omega+1} = d^{\omega}(C - D) + d^{\omega+1}(D - NC).$$

Se $V(y) - V(y') \ge 0$, allora la strategia y, che conduce ad una deviazione nel periodo $t = \omega + 1$, domina la strategia y', che conduce ad una deviazione nel periodo $t = \omega$; mentre se V(y) - V(y') < 0, è, tra le due, la strategia in cui la deviazione avviene nel periodo $t = \omega$ a dominare la strategia in cui la deviazione avviene nel periodo $t = \omega + 1$. Dato che $V(y) - V(y') = d^{\omega}[(C - D) + (D - NC)d]$,

$$V(y)-V(y') \ge 0 \Leftrightarrow d \ge \frac{D-C}{D-NC} \Leftrightarrow r \le \frac{C-NC}{D-C}.$$

$$(C-D)+(D-NC)d \ge 0 \qquad \qquad \frac{1}{1+r} \ge \frac{D-C}{D-NC}$$

$$(D-NC)d \ge D-C \qquad \qquad D-NC \ge (1+r)(D-C)$$

$$d \ge \frac{D-C}{D-NC} \Leftrightarrow r \le \frac{C-NC}{D-C} \qquad C-NC \ge r(D-C)$$

19

Trigger strategy: equilibrio di Nash

Il segno di V(y)-V(y') non dipende da ω , quindi dati gli esiti e il fattore di sconto (ovvero il saggio d'interesse) sappiamo che se queste disuguaglianze sono rispettate, al giocatore 2 conviene una strategia che procrastina la defezione all'infinito, mentre conviene una strategia che anticipa la deviazione al periodo t=0 nel caso opposto. Questo significa che ci sono solo due insiemi di strategie che possono essere dominanti: quelle con gli esiti (ii), che sono dominanti se e solo se $r \leq (C-NC)/(D-C)$, e quelle con gli esiti $Y_0=D$ e $Y_t=NC$ per ogni $t \geq 1$, che sono dominanti se e solo se r > (C-NC)/(D-C)

$$r \leq \frac{C - NC}{D - C} \Rightarrow$$

$$(i) \exists \tau : Y_t = C \text{ se } t < \tau, Y_\tau = D, Y_t = NC \text{ se } t > \tau$$

$$(ii) Y_t = C \quad \forall t$$

$$r > \frac{C - NC}{D - C} \Rightarrow \qquad Y_0 = D, Y_t = NC \text{ se } t > 0$$

$$(i) \exists \tau : Y_t = C \text{ se } t < \tau, Y_\tau = D, Y_t = NC \text{ se } t > \tau$$

$$(ii) Y_t = C \quad \forall t$$

21

Trigger strategy: equilibrio di Nash

$$r > \frac{C - NC}{D - C} \Rightarrow$$

$$D + dNC + d^{2}NC + ... + d^{t}NC + ... > C + dC + ... + d^{t}C + ...$$

$$D + \frac{d}{1 - d}NC > \frac{1}{1 - d}C$$

$$(1 - d)D + dNC > C$$

$$D - C > d(D - NC)$$

$$(1 + r)(D - C) > D - NC$$

$$r(D - C) > C - NC$$

$$S_{t} = \frac{1 - d^{t+1}}{1 - d}$$

$$\lim_{t \to \infty} S_{t} = \frac{1}{1 - d}$$

<u>Proposizione 6.1.</u> La trigger strategy sostiene un equilibrio di Nash in cui entrambi i giocatori colludono se e solo se $r \le (C - NC)/(D - C)$.

<u>Dimostrazione.</u> Basta notare che se entrambi i giocatori seguono la *trigger strategy* e $r \le (C - NC)/(D - C)$, nessuno dei due è interessato a cambiare la propria strategia. Al contrario, se entrambi i giocatori seguono la *trigger strategy* e r > (C - NC)/(D - C), ciascuno dei due è interessato a cambiare la propria strategia.

23

Il dilemma del prigioniero ripetuto un numero di volte finito ma non certo

- Dal valore attuale al valore atteso (o speranza matematica).
- Il caso della probabilità di ripetizione costante nel tempo.

$$\frac{p}{1+r} = \frac{1}{1+R}$$
$$(r <)R = \frac{1+r-p}{p} \le \dots$$

Collusione

Assunzione 1: Numero di imprese. $I = \{1,2\}$ è l'insieme finito delle imprese concorrenti all'interno del mercato considerato.

Assunzione 2: Prodotti omogenei. Ogni impresa $i \in I$ produce un unico bene; i beni prodotti dalle imprese in I sono tra loro omogenei.

Assunzione 3: Domanda di mercato. Le preferenze dei consumatori determinano la funzione di domanda Q=D(p), dove Q è la quantità domandata dal mercato e p è il prezzo di domanda, dotata delle seguenti caratteristiche tecniche. Esiste $\overline{p}>0$ tale che:

D(p) è definita e continua nell'intervallo $p \in \mathbb{R}_+$;

 $D(p) = 0 \ per \ p \ge \overline{p}$;

 $D(p) > 0, \forall p \in (0, \overline{p});$

D(p) è derivabile due volte in $(0,\overline{p})$ con derivate continue (in tale intervallo la funzione D(p) è quindi di classe C^2), dove $D'(p) = \partial D(p)/\partial p < 0$ e $D''(p) = \partial^2 D(p)/\partial p^2 \leq 0$.

25

Collusione

Assunzione 4: Costi. I costi di produzione che l'impresa $i \in I$ deve sostenere sono definiti dalla funzione $C(q_i,k_i)$, dove q_i è la quantità prodotta e venduta dalla generica impresa i, mentre k_i è la sua capacità produttiva:

$$C(q_i, k_i) = \begin{cases} F + rk_i + cq_i & \text{se } 0 \le q_i \le k_i \\ \\ \infty & \text{se } q_i > k_i \end{cases}$$

Assunzione 6: Dimensione delle imprese. Ogni impresa i possiede una capacità produttiva k_i : $k_i \ge D(c)$.

Assunzione 7: Struttura temporale. Al tempo to le imprese in I seelgono si multaneamento i prezzi di offerta.

Assunzione 8: Strategie. La variabile strategica impiegata dalla generica impresa $i \in I$ consiste nella scelta del prezzo di vendita del bene prodotto p_i . $p_i \in [c, \overline{p}]$.

Collusione

Assunzione 20: Struttura temporale. Ad ogni tempo $t \in \mathbb{N}_0$ le imprese in I scelgono simultaneamente i prezzi di offerta che saranno adottati in quel tempo.

Assunzione 21: Strategie. Una strategia della generica impresa $i \in I$ è un elemento del prodotto cartesiano $\Theta_i = [c, \overline{p}] \times \mathbb{P}_i^{\mathbb{F}_0} \times \mathbb{P}_i^{\mathbb{F}_1} \times ... \times \mathbb{P}_i^{\mathbb{F}_i} \times ...,$ lo spazio strategico, dove:

- $-\mathbb{E}_t = [c, \overline{p}] \times [c, \overline{p}]$ è l'insieme dei prezzi adottati dalle imprese al tempo t;
- $\mathbb{F}_0 = \mathbb{E}_0; \mathbb{F}_t = \mathbb{E}_0 \times \mathbb{E}_1 \times \dots \times \mathbb{E}_t;$
- $\mathcal{P}_{i}^{\mathcal{F}_{i}} = \left\{ \mathbf{p}_{i}^{F_{i}} : \mathcal{F}_{t} \rightarrow [c, \overline{p}] \right\} \ \ \grave{e} \ \ l'insieme \ delle \ funzioni \ il \ cui \ dominio \ e \ codominio \ sono, rispettivamente, \ \mathcal{F}_{t} \ e \ [c, \overline{p}].$

27

Il modello di Bertrand come dilemma del prigioniero

$$D \approx \Pi_m > C = \frac{\Pi_m}{2} > NC = 0 = ND$$

Il modello di Bertrand come gioco costituente di un gioco ripetuto

$$D \approx \Pi_m > C = \frac{\Pi_m}{2} > NC = 0 = ND$$
$$r \le \frac{C - NC}{D - C} \approx 1$$

29

Il modello di Cournot come dilemma del prigioniero

$$p = a - b(q_1 + q_2)$$

$$\begin{vmatrix} & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

$$D = \frac{9(a-c)^{2}}{64b} > C = \frac{(a-c)^{2}}{8b} > NC = \frac{(a-c)^{2}}{9b} > ND = \frac{3(a-c)^{2}}{32b}$$

Il modello di Cournot come gioco costituente di un gioco ripetuto : C

$$\Pi_{m} = [a - c - bq]q, \quad -bq + a - c - bq = 0$$

$$q_{m} = \frac{a - c}{2b}, \quad q_{C} = \frac{q_{m}}{2} = \frac{a - c}{4b}$$

$$p_{C} = a - b\frac{a - c}{2b} = \frac{a + c}{2}$$

$$C = (p_{C} - c)q_{C} = \frac{(a - c)^{2}}{8b}$$

31

Il modello di Cournot come gioco costituente di un gioco ripetuto: NC

$$\Pi_{i} = \left[a - c - b(q_{1} + q_{2})\right] q_{i}$$

$$-bq_{i} + a - c - b(q_{1} + q_{2}) = 0$$

$$q_{NC} = \frac{a - c}{3b}, \quad p_{NC} = a - b\frac{2(a - c)}{3b} = \frac{a + 2c}{3}$$

$$NC = (p_{NC} - c)q_{NC} = \frac{(a - c)^{2}}{9b}$$

Il modello di Cournot come gioco costituente di un gioco ripetuto: D

$$q_{ND} = q_{C} = \frac{a - c}{4b}$$

$$\Pi_{D} = \left[a - b(q_{ND} + q_{D})\right]q_{D} - cq_{D}$$

$$-bq_{D} + a - c - b(q_{ND} + q_{D}) = 0$$

$$q_{D} = \frac{a - c - bq_{ND}}{2b} = \frac{3(a - c)}{8b}$$

33

Il modello di Cournot come gioco costituente di un gioco ripetuto: D

$$q_{ND} = q_C = \frac{a - c}{4b} \qquad q_D = \frac{3(a - c)}{8b}$$

$$p_D = p_{ND} = a - b \left[\frac{a - c}{4b} + \frac{3(a - c)}{8b} \right] = \frac{3a + 5c}{8}$$

$$D = (p_D - c)q_D = \frac{9(a - c)^2}{64b}$$

Il modello di Cournot come gioco costituente di un gioco ripetuto: ND

$$q_{ND} = \frac{a-c}{4b}$$

$$p_D = p_{ND} = \frac{3a+5c}{8}$$

$$ND = (p_{ND} - c)q_{ND} = \frac{3(a-c)^2}{32b}$$

35

Il modello di Cournot come gioco costituente di un gioco ripetuto

$$D = \frac{9(a-c)^2}{64b} > C = \frac{(a-c)^2}{8b} > NC = \frac{(a-c)^2}{9b} > ND = \frac{3(a-c)^2}{32b}$$

$$r \le \frac{C - NC}{D - C} = \frac{64}{72} = \frac{8}{9}$$

$$\frac{1}{8} - \frac{1}{9} = \frac{1}{\frac{72}{164}}$$

Grado di collusione

 Irrilevante quando il gioco costituente è il modello di Bertrand.

$$D \approx \Pi_m > C = \alpha \frac{\Pi_m}{2} > NC = 0 = ND$$
$$r \le \frac{C - NC}{D - C} \approx \frac{\alpha}{2 - \alpha} < 1$$

37

Grado di collusione

 Studiamo il caso in cui il gioco costituente è il modello di Cournot con funzione di domanda lineare:

$$p = a - b(q_1 + q_2)$$

Grado di collusione quando il gioco costituente è il modello di Cournot: C

$$\Pi_{m} = [a-c-bq]q, \quad -bq+a-c-bq = 0$$

$$q_{m} = \frac{a-c}{2b}, \quad q_{C} = \frac{q_{m}}{2\alpha} = \frac{a-c}{4\alpha b} \quad (\alpha \le 1)$$

$$p_{C} = a-b\frac{a-c}{2\alpha b} = \frac{(2\alpha-1)a+c}{2\alpha}$$

$$C = (p_{C}-c)q_{C} = \frac{(2\alpha-1)(a-c)^{2}}{8\alpha^{2}b}$$

39

Grado di collusione quando il gioco costituente è il modello di Cournot: NC

$$\Pi_{i} = \left[a - c - b(q_{1} + q_{2})\right]q_{i}
-bq_{i} + a - c - b(q_{1} + q_{2}) = 0$$

$$q_{NC} = \frac{a - c}{3b}, \quad p_{NC} = a - b\frac{2(a - c)}{3b} = \frac{a + 2c}{3}$$

$$NC = \left(p_{NC} - c\right)q_{NC} = \frac{(a - c)^{2}}{9b} \qquad \left(\alpha \ge \frac{3}{4}\right)$$

Grado di collusione quando il gioco costituente è il modello di Cournot: NC

$$C = \frac{(2\alpha - 1)(a - c)^2}{8\alpha^2 b} , NC = \frac{(a - c)^2}{9b}$$
$$\frac{(2\alpha - 1)}{8\alpha^2} \ge \frac{1}{9} , 8\alpha^2 - 18\alpha + 9 \le 0$$

$$\frac{3}{4} \le \alpha \le \frac{3}{2}$$

41

Grado di collusione quando il gioco costituente è il modello di Cournot: D

$$\begin{aligned} q_{ND} &= q_C = \frac{a - c}{4\alpha b} \\ \Pi_D &= \left[a - b(q_{ND} + q_D) \right] q_D - c q_D \\ -b q_D &+ a - c - b(q_{ND} + q_D) = 0 \\ q_D &= \frac{a - c - b q_{ND}}{2b} = \frac{(4\alpha - 1)(a - c)}{8\alpha b} \end{aligned}$$

Grado di collusione quando il gioco costituente è il modello di Cournot: D

$$q_{ND} = q_C = \frac{a - c}{4\alpha b}$$

$$q_D = \frac{(4\alpha - 1)(a - c)}{8\alpha b}$$

$$p_D = p_{ND} = a - b \left[\frac{a - c}{4\alpha b} + \frac{(4\alpha - 1)(a - c)}{8\alpha b} \right] = \frac{a - c}{8\alpha b}$$

43

Grado di collusione quando il gioco costituente è il modello di Cournot: D

$$q_{ND} = \frac{a - c}{4\alpha b}, q_D = \frac{(4\alpha - 1)(a - c)}{8\alpha b}$$

$$p_D = p_{ND} = a - b\frac{(4\alpha + 1)(a - c)}{8\alpha b} =$$

$$= \frac{(4\alpha - 1)a + (4\alpha + 1)c}{8\alpha}$$

$$D = (p_D - c)q_D = \frac{(4\alpha - 1)^2(a - c)^2}{64\alpha^2 b}$$

Grado di collusione quando il gioco costituente è il modello di Cournot: ND

$$q_{ND} = \frac{a - c}{4\alpha b}$$

$$p_D = p_{ND} = \frac{(4\alpha - 1)a + (4\alpha + 1)c}{8\alpha}$$

$$ND = (p_{ND} - c)q_{ND} = \frac{(4\alpha - 1)(a - c)^2}{32\alpha^2 b}$$

45

Grado di collusione quando il gioco costituente è il modello di Cournot

$$D > C > NC > ND$$

$$D = \frac{(4\alpha - 1)^{2}(a - c)^{2}}{64\alpha^{2}b}, \quad C = \frac{(2\alpha - 1)(a - c)^{2}}{8\alpha^{2}b}$$

$$NC = \frac{(a - c)^{2}}{9b}, \quad ND = \frac{(4\alpha - 1)(a - c)^{2}}{32\alpha^{2}b}$$

$$\frac{(4\alpha - 1)^{2}}{64\alpha^{2}} > \frac{2\alpha - 1}{8\alpha^{2}} > \frac{1}{9} > \frac{4\alpha - 1}{32\alpha^{2}}$$

Grado di collusione quando il gioco costituente è il modello di Cournot

$$9(4\alpha-1)^2 > 72(2\alpha-1) > 64\alpha^2 > 18(4\alpha-1)$$

$$9\left(4\frac{3}{4}-1\right)^2 = 72\left(2\frac{3}{4}-1\right) = 64\left[\frac{3}{4}\right]^2 = 18\left(4\frac{3}{4}-1\right)$$

$$\frac{(4\alpha - 1)^2}{64\alpha^2} > \frac{2\alpha - 1}{8\alpha^2} > \frac{1}{9} > \frac{4\alpha - 1}{32\alpha^2}$$

47

Grado di collusione quando il gioco costituente è il modello di Cournot

$$9(4\alpha-1)^2 > 72(2\alpha-1) > 64\alpha^2 > 18(4\alpha-1)$$

$$72(4\alpha - 1) > 144 > 128\alpha > 72$$

Grado di collusione quando il gioco costituente è il modello di

Cournot

$$D = \frac{(4\alpha - 1)^{2}(a - c)^{2}}{64\alpha^{2}b}, \quad C = \frac{(2\alpha - 1)(a - c)^{2}}{8\alpha^{2}b}$$

$$NC = \frac{(a - c)^{2}}{9b}, \quad ND = \frac{(4\alpha - 1)(a - c)^{2}}{32\alpha^{2}b}$$

$$r \le \frac{C - NC}{D - C} = \frac{\frac{2\alpha - 1}{8\alpha^{2}} - \frac{1}{9}}{\frac{(4\alpha - 1)^{2}}{64\alpha^{2}} - \frac{2\alpha - 1}{8\alpha^{2}}} = \frac{72(2\alpha - 1) - 64\alpha^{2}}{9(4\alpha - 1)^{2} - 72(2\alpha - 1)}$$

$$= \frac{144\alpha - 72 - 64\alpha^{2}}{144\alpha^{2} - 216\alpha + 81} = \frac{8(3 - 2\alpha)(4\alpha - 3)}{9(4\alpha - 3)^{2}} = \frac{8(3 - 2\alpha)}{9(4\alpha - 3)}$$

49

Grado di collusione quando il gioco costituente è il modello di

Cournot

