NON MONETARY EVALUATION METHODS

To accept (physical and social) complexity
 Policy tools: those that accept complexity

E.G. social multicriteria decision aid, SocialMulticriteriaEvaluation (G. Munda - UAB)

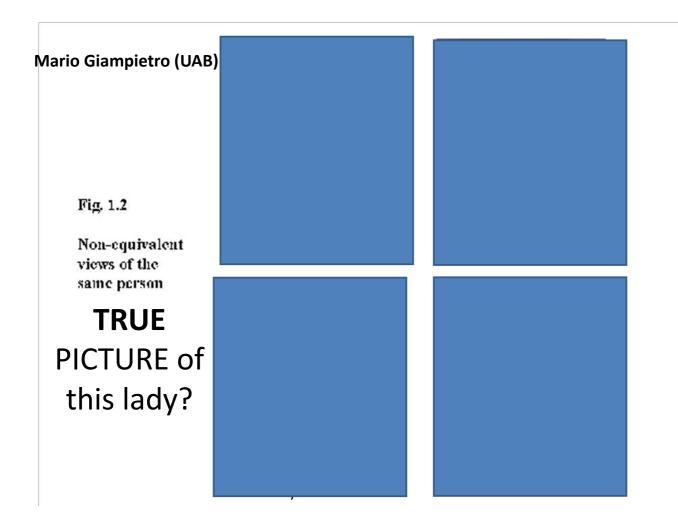
> What is most important: QUALITY of the evaluation process

Complexity

- Different NON-EQUIVALENT description of
- NESTED hyerarchical systems
- Different time-space scales

What seems to go at one scale is bad at the other:

e.g. paying taxes, good at the individual scal, bad at the macro-scale


Which are the boundaries of what the researcher want to observe?

→NON-NEUTRALITY OF SCIENCE

Social complexity: different point of view of actors and stakeholders

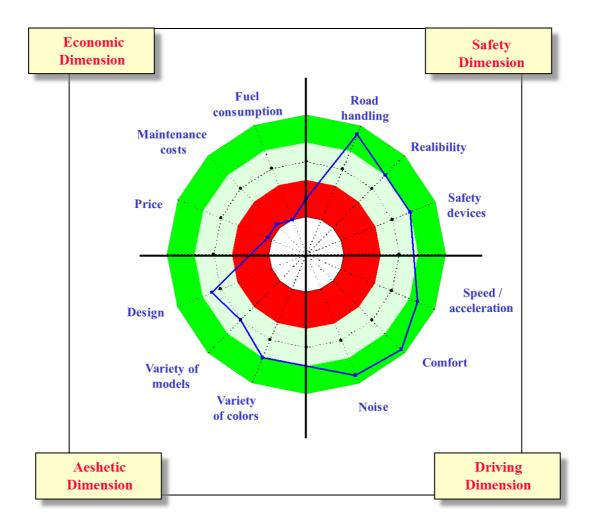
COMPLEX SYSTEMS CANNOT BE CAPTURED BY A SINGLE DIMENSION/PERSPECTIVE



Fig. 1.2

Non-equivalent views of the same person

All the pictures are useful: we need different descriptions for different purposes


HOWEVER, how can we combine different non-equivalent descriptions to choose ...

for instance

- a car?

- A smartphone?

- The partner?

Matrix of the IMPACTs

Alternatives						
Criteria	a ₁	a ₂	•	a _n		
9 1	g₁(a₁)	g ₁ (a ₂)	•	g₁(a _n)		
-			•	•		
g _m	g _m (a ₁)	$g_m(a_2)$	-	g _m (a _n)		

Example

	Alternatives .) Criteria ↓	A	В	С
+	g1.1	43	34	2
+	g1.2	Moderate	Very good	Good
+	g1.3	1°	2°	3°
-	g2.1	234	12	100
+	g2.2	≈100	≈135	≈200
-	g3.1	12	34	44
+	g3.2	no	SÌ	Sì
+	g3.3	12	6	3
+	g3.4	13.2	18	14

The story starts in 1770

when Borda worried whether Academy's decisions reflected who they truly wanted as a president.

His concern was not whether the voters were informed or voted, but rather about how they tallied the ballots.

Through a cleverly constructed example, Borda demonstrated that the Academy's procedure was so bad that they could elect someone who they actually viewed as the worst!

Clearly, such a misguided procedure should have been tossed into the trash heap of history.

It was not;

instead we still use it

to select members of the Senate, Congress, City Councils, Mayors, Assemblies, and, indirectly, the President of the USA.

This highly flawed approach is the standard plurality vote

where we vote for one candidate

and the winner is the candidate with the most votes.

SAARI: https://zdoc.site/the-symmetry-and-complexity-of.html

						A	E	3	С				Α	В	С
				+	g1.1	43	34	4	2			g1.1	2	1	0
From the matrix of		+	g1.2	Mod	Ver	y G	Good			g1.2	0	2	1		
tł	ne impa	acts to		+	g1.3	1°	2°		3°			g1.3	2	1	0
ra	anking	alterna	atives	-	g2.1	234	1:	2	100		•	g2.1	0	2	1
				+	g2.2	≈100	≈1	35	≈200	BORD		g2.2	0	1	2
<u> </u>	Comp			-	g3.1	12	34	4	44	n-1 sco to the f	-	g3.1	2	1	0
	me	thods	5	+	g3.2	no	ye	es	YES			g3.2	0	1.5	1.5
				+	g3.3	12	6	5	3	n-2 to t		g3.3	2	1.0	0
				+	g3.4	13.2	1	8	14	second		-	2	2	1
					9011						-	g3.4 BORDA	8		
		Α	В		с				A	В	С	BORDA	8	12.5	6.5
								g1.1	43	34	2				
+	g1.1	43	34		2		N	g1.2	5	18	9				
+	g1.2	Mod	Very G		Good			g1.3	23	18	12				
+	g1.3	1°	2°		3°	•	V	g2.1	-23	-1	-10)			
-	g2.1	234	12		100	Cost	C :4	g2.2		13.5	20				
+	g2.2	≈100	≈135		≈200	Bene									
-	g3.1	12	34		44	 converts into monetary units 		g3.1		-20	-10	0			
+	g3.2	no	yes		YES			g3.2		6	7				
+	g3.3	12	6		3			g3.3		6	3				
	-	12.0	10		14			g3.4	10	15	12				
+	g3.4	13.2	18		14			C-E	3 77	89.5	-4	5			
									I	Ι		I			

From the matrix of the impacts to ranking alternatives

NON Compensative methods

	Alt-s→ criteria↓	A	В	С	ranking
+	g1.1	43	34	2	ABC
+	g1.2	Moderate	Very Good	Good	BCA
+	g1.3	1°	2°	3°	ABC
-	g2.1	234	12	100	BCA
+	g2.2	≈100	≈135	≈200	CBA
-	g3.1	12	34	44	ABC
+	g3.2	no	yes	YES	CBA
+	g3.3	12	6	3	ABC
+	g3.4	13.2	18	14	BCA

Rankings	criteria
ABC	4
BCA	3
CBA	2

	CONE	ORCET:		lorcet winner: B,
A is the WORST!!!				
If C were not there? B:A = 5:4				
If B were not there? C:A = 5:4				B=6+2+4 = 12 C=3+4 = 7
BORDA argument:				∫ 1st→2, 2° → 1 A=8
A=4> B=3 > C=2		CBA	2	Borda Count:
Standard plurality e	lection	BCA	3	
		ABC	4	-
		Rankings	criteria	

condorce I: pairwise comparisons:	Condorcet winner: B, B beats every other alt. Condorcet looser: A, A loses with every other alt.			
A vs B 4:5	A loses with every other alt.			
A vs C 4:5	! Not always BORDA selects			
B vs C 7: 2	the Condorcet winner!			

From the impact matrix to the OUTRANKING matrix (Condorcet methods)

		А	В	С
+	g1.1	43	34	2
+	g1.2	Mod	Very G	Good
+	g1.3	1°	2°	3°
-	g2.1	234	12	100
+	g2.2	≈100	≈135	≈200
-	g3.1	12	34	44
+	g3.2	no	yes	YES
+	g3.3	12	6	3
+	g3.4	13.2	18	14

Ν		Α	В	С
'Outranking' matrix	Α	-	4	4
	В	5	-	7
	С	5	2	-

Number of criteria for which an alternative in the rows is better than the alternative in the columns

	А	В	С
А	-	4/9=44.4%	44.4%
В	55.6%	-	77.7%
С	55.6%	22.3%	

Weight			А	В	С
11	+	g1.1	43	34	2
11	+	g1.2	Mod	Very G	Good
11	+	g1.3	1°	2°	3°
16.5	-	g2.1	234	12	100
16.5	+	g2.2	≈100	≈135	≈200
8.25	-	g3.1	12	34	44
8.25	+	g3.2	no	yes	YES
8.25	+	g3.3	12	6	3
8.25	+	g3.4	13.2	18	14
100					

Equal weight for THEME, area, dimension

	A	В	С
A	-	11+11+8.25 +8.25=39	11+11+8.25+8.25 =39
В	11+16.5+16.5+8. 25+8.25= 60	-	11+11+11+16.5+ 8.25+8.25+8.25= 75.25
С	11+16.5+16.5+8. 25+8.25=60	16.5+8.25= 24.75	-

From the outranking matrix to the ranking: Kemeny & Young-Levenglick method

	А	В	С
А	-	4	4
В	5	-	7
С	5	2	-

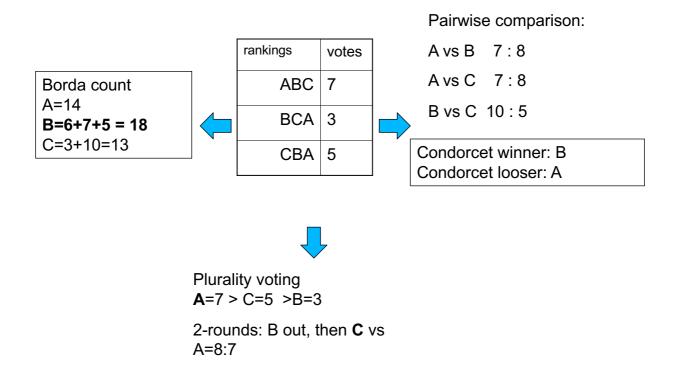
	Kemeny score		
ABC	4+4+7=15		
ACB	4+4+2=10		
BAC	5+7+4=16		
BCA	5+7+5= 17		
CAB	5+2+4=11		
СВА	5+2+5=12		

An interesting example ...

		-
riteri	ordin	
24	ABC	
2	ACB	
16	BAC	\vdash
15	BCA	
27	CAB	
16	CBA	
100		
		-

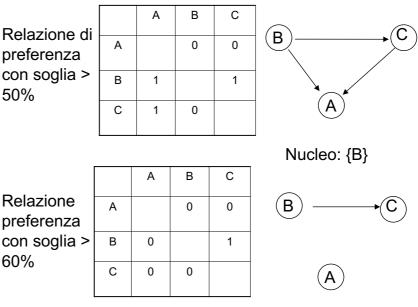
Ι Π Borda 26 95 А 43 III В 31 40 102 II С 43 17 103 Ι

Standard plurality: C


Outranking matrix

	А	В	С
Α	-	53	42
В	47	-	55
С	58	45	-

A>B, B>C, C>A: cycle!


	kemeny score
ABC	150
ACB	140
BAC	144
BCA	160
CAB	156
CBA	150

Different example: neither the simple plurality voting neither the two-round voting system elects condorcet Winner

Dalla matrice degli impatti all'ordine delle altern.: metodi <u>non</u> <u>compensativi</u> (a la Condorcet) 2° passo con metodi ELECTRE e simili

	А	В	С
A	-	4	4
В	5	-	7.5
С	5	1.5	-

Nucleo:

Nucleo: {A,B}

- a) i nodi appartenenti al nucleo sono fra loro non confrontabili rispetto alla relazione Preferenza;
- b) per ogni nodo fuori dal nucleo c'è ne è almeno uno nel nucleo che è ad essi preferito

Is it always a good idea to elect condorcet winner?

	Rankings	Votes/crit eria	⁶ Outranking			A	В	С	D
				Outranking' matrix	A	-	52	52	52
	ACBD	52			В	48	-	24	80
	BCDA	24			С	48	76	-	80
	DCBA	20			D	48	20	20	-
	CBDA	4		,	4) Borda Count (3 to the 1st)				
	1) Plurality		A=156 B=52+72+20+8= 152						
A =	A =52 > B=24>D=20>C=4			C =104+48+40+12=204					

D=24+60+4= 88

2) Two-steps plurality

A vs B = 52:48

3) Condorcet winner: A

In this example most methods elect **A**, a candidate that is the worse for 48% of the voters. **Borda count elects C, a candidate** which ranks SECOND for 96% of the voters and FIRST for the 4%.